3-1 CLASIFICACION DE LOS PATRONES

Un patrón de medición es una representación física de una unidad de medición. Una unidad se realiza con referencia a un patrón físico arbitrario o a un fenómeno natural que incluye constantes físicas y atómicas. Por ejemplo, la unidad fundamental de masa en el Sistema Internacional (SI) es el kilogramo, que se define como la masa de un decímetro cúbico de agua a su temperatura de máxima densidad de 4°C (véase sección 2-2). Esta unidad de masa se representa con un material patrón: la masa del Kilogramo Patrón Internacional, que consiste en un cilindro de aleaciones de platino e iridio, el cual se encuentra en la Oficina Internacional de Pesas y Medidas en Sèvres, cerca de París, y es la representación material del kilogramo. Se han desarrollado patrones semejantes para otras unidades de medición, incluyendo patrones para las unidades fundamentales, así como para algunas unidades mecánicas y eléctricas derivadas.

Además de unidades fundamentales y derivadas de medición, hay diferentes tipos de patrones de medición, clasificados por su función y aplicación en las siguientes categorías:
a) Patrones internacionales
b) Patrones primarios
c) Patrones secundarios
d) Patrones de trabajo

Los patrones internacionales se definen por acuerdos internacionales. Representan ciertas unidades de medida con la mayor exactitud que permite la tecnología de producción y medición. Los patrones internacionales se evalúan y verifican periódicamente con mediciones absolutas en términos de las unidades fundamentales (véase tabla 2-2). Estos patrones se encuentran en la Oficina Internacional de Pesas y Medidas y no están disponibles como instrumentos de medición de uso ordinario o para propósitos de comparación o calibración.

Los patrones primarios (básicos) se encuentran en los laboratorios de patrones nacionales en diferentes partes del mundo. El National Bureau of Standards (NBS) en Washington es responsable del mantenimiento de los patrones primarios en Estados Unidos. Otros laboratorios adicionales son el National Physical Laboratory (NPL) en Gran Bretaña y, el más antiguo del mundo, el Physikalisch-Technische Reichsanstalt, de Alemania. Los patrones primarios representan unidades fundamentales y algunas de las unidades mecánicas y eléctricas derivadas, se calibran independientemente por medio de mediciones absolutas en cada uno de los laboratorios nacionales. Los resultados de estas mediciones se comparan entre sí, con lo cual se obtiene una representación promedio mundial para el patrón primario. Los patrones primarios no están disponibles para utilizarse fuera de los laboratorios nacionales. Una de las principales funciones de los patrones primarios es la verificación y calibración de los patrones secundarios.

Los patrones secundarios son los patrones básicos de referencia que se usan en los laboratorios industriales de medición. Estos patrones se conservan en la industria particular interesada y se verifican localmente con otros patrones de referencia en el área. La responsabilidad del mantenimiento y calibración de los patrones secundarios depende del laboratorio industrial. Los patrones secundarios por lo general, se envían periódicamente a los laboratorios nacionales para su calibración y comparación con los patrones primarios, luego son devueltos al usuario industrial con un certificado del valor de medición en términos del patrón primario.

Los patrones de trabajo son las herramientas principales en un laboratorio de mediciones. Se utilizan para verificar y calibrar la exactitud y comportamiento de las mediciones efectuadas en las aplicaciones industriales. Un fabricante de resistencias de precisión, por ejemplo, puede utilizar una resistencia patrón (un patrón de trabajo) en el departamento de control de calidad de la planta para verificar su equipo de prueba. En este caso, él verifica que las mediciones efectuadas estén dentro de los límites requeridos de exactitud.

En las mediciones eléctricas y electrónicas interesan los patrones de medición eléctricos y magnéticos, los cuales se analizan en la siguiente sección. Sin embargo, las unidades eléctricas pueden generarse a partir de las unidades básicas de longitud, masa y tiempo (de hecho, los laboratorios nacionales efectúan mediciones relacionando las unidades eléctricas derivadas con unidades fundamentales) por lo que se dará una descripción más detallada.
3-2 PATRONES PARA MASA, LONGITUD Y VOLUMEN

La unidad de masa métrica se definió como la masa de un decímetro cúbico de agua a una temperatura de máxima densidad. La representación material de esta unidad es el Kilogramo Patrón Internacional, que se halla en la Oficina Internacional de Pesas y Medidas, cerca de París. El patrón primario de masa estadounidense es el Kilogramo Patrón de Estados Unidos, que se encuentra en la NBS, con una precisión de $1/10^6$; en ocasiones se verifica con el patrón de la Oficina Internacional. Los patrones secundarios de masa, dados por los laboratorios industriales, generalmente tienen una precisión de 1 ppm (parte por millón) y pueden verificarse con los patrones primarios de la NBS. En el comercio los patrones de trabajo están disponibles en una amplia gama de valores para satisfacer cualquier aplicación. Su precisión es del orden de 5 ppm. Los patrones de trabajo se verifican con los patrones secundarios de laboratorio.

La libra (lb), establecida por la Weights and Measures Act, de 1963 (que entró en vigor el 31 de enero de 1964), se define como 0.45359237 kg exactamente. Todos los países que conservan la libra como unidad básica de medición han adoptado la nueva definición, la cual reemplaza el patrón inicial de platino.

La unidad métrica de longitud, el metro, se definió como la $1/10^4$ parte del cuadrante del meridiano que pasa a través de París (sección 2-2). Esto fue consecuencia de la sugerencia del conocido astrónomo francés Pierre-Simon Laplace, en 1790 de dividir el ángulo recto en 100 grados en lugar de 90, y cada grado en 100 minutos en lugar de 60. La medida de un metro sería la distancia en la superficie de la Tierra recorrida en un arco de un segundo, lo cual es un diezmilésimo del cuadrante del meridiano o la línea que va desde el Ecuador al Polo Norte Geográfico. Esto se representó materialmente por la distancia entre dos líneas grabadas en una barra de platino-iridio que se encuentra en la Oficina Internacional de Pesas y Medidas, cerca de París. En 1960, el metro se redefinió con más exactitud en términos del número de longitudes de onda emitidas por un átomo de kriptón-86. Por más de 20 años el metro patrón internacional fue 1 650 763.73 longitudes de onda de la radiación rojo-naranja observada cuidadosamente en una lámpara de descarga de kriptón, ya que este patrón no proporcionaba un concepto original y preciso, en 1983 se adoptó un nuevo metro patrón, el cual es muy simple: un metro es la distancia a la que se propaga la luz en el vacío en 1/299 792 458 segundos.

La yarda se define como 0.9144 metros y una pulgada es 25.4 mm, ya que los patrones de unidades inglesas para medición se basan en patrones métricos. Esta definición de yarda y pulgada reemplaza a la anterior en términos de un yarda patrón imperial. Los pocos países que aún utilizan la yarda y otras unidades de medición inglesas han adoptado esta nueva definición.

Los patrones de trabajo industriales de longitud más utilizados son bloques de medida de precisión hechos de acero. Estos bloques tienen dos superficies planas paralelas, a una distancia de separación especificada, con una tolerancia en exactitud en el intervalo de 0.5-0.25 micrones (1 micrón = 1 milionesima de metro). El desarrollo y uso de los bloques de precisión, de bajo costo y elevada exactitud, han hecho posible la fabricación de componentes industriales intercambiables en una aplicación muy económica de mediciones con precisión.
La unidad de volumen es una cantidad derivada y no se representa por medio de un patrón internacional. Sin embargo, la NBS ha elaborado varios patrones primarios de volumen, calibrados en términos de las dimensiones absolutas de longitud y masa, los patrones derivados secundarios de volumen están disponibles y se pueden calibrar según los patrones primarios de la NBS.

Conforme aumenta la necesidad de contar con patrones más exactos y se desarrolla tecnología para crear y mantener estos patrones, las bases para las medidas y pesos internacionales se modificarán hasta satisfacer las necesidades de los científicos y la comunidad comercial. Los mejoramientos y descubrimientos serán añadidos a los patrones internacionales para mantener en armonía las necesidades mundiales.

3.3 PATRONES DE TIEMPO Y FRECUENCIA*

Desde tiempos remotos el hombre ha buscado un patrón de referencia para una escala uniforme de tiempo así como los medios para interpolarla y obtener lapsos de tiempo más cortos. Por muchos siglos la referencia de tiempo fue la rotación de la Tierra sobre su eje respecto al Sol. Observaciones astronómicas preciosas han mostrado que dicha rotación del planeta alrededor del Sol es muy irregular, debido a las dispares variaciones en la velocidad de rotación del planeta. Puesto que la escala de tiempo basada en este tiempo solar aparente no representa ninguna escala de tiempo uniforme, se buscaron otras alternativas. El tiempo solar medio daría una escala de tiempo más exacta. Un día solar medio es el promedio de todos los días del año. Un segundo solar medio es igual a 1/86 400 del día solar medio. El segundo solar medio, así definido, es inadecuado como unidad fundamental de tiempo, debido a que está relacionado con la rotación de la Tierra, la cual se sabe que no es uniforme.

El sistema de tiempo universal (TU), o tiempo solar medio, se basa también en la rotación de la Tierra sobre su eje. Este sistema se conoce como TU₀ y está sujeto a variaciones periódicas prolongadas e irregulares. Las correcciones del TU₀ han originado dos escalas universales de tiempo; TU₁ y TU₂. La TU₁, reconoce que la Tierra está sujeta al movimiento polar, y se basa en la rotación angular real de la Tierra, corregida por el movimiento polar. La escala de tiempo TU₂ es la TU₁ con una corrección adicional por las variaciones estacionales de la rotación de la Tierra. Estas variaciones se deben, en apariencia, a los desplazamientos estacionales de la materia sobre la superficie de la Tierra, de tal modo que cambia la cantidad de hielo en las regiones polares a medida que el Sol se desplaza del hemisferio sur al norte y viceversa durante el año. Esta redistribución cíclica de la masa incide sobre la rotación de la Tierra, lo que produce cambios en su momento de inercia. El periodo, o instante de tiempo, de TU₂ se puede establecer con una exactitud de pocos milisegundos, pero por lo general no se distribuye con esta exactitud. El periodo indicado por las señales de tiempo de radio patrón difieren del tiempo de TU₂ hasta en 100 ms. Los valores

*Frequency and Time Standards. Nota de aplicación AN 52, publicado por Hewlett-Packard, Palo Alto, California; describe métodos de comparación de frecuencias, escalas de tiempo y patrones de tiempo mundial de radiodifusión.

Sección 3.3 Patrones de tiempo y frecuencia
de la diferencia se publican en los boletines del Servicio Nacional del Tiempo (NBS) y del Bureau International del l'Heure (observatorio de París).

La búsqueda de una unidad de tiempo universal ha permitido que los astrónomos definan la unidad de tiempo llamada tiempo efímero (TE), que se basa en observaciones astronómicas del movimiento de la Luna alrededor de la Tierra. Desde 1956 el segundo efímero se ha definido por la Oficina Internacional de Pesas y Medidas como la fracción $1/31556925.9747$ del año tropical para enero de 1900 de las 0 a las 12 horas TE, que se adoptó como la unidad invariable fundamental de tiempo. Una desventaja del uso del segundo efímero es que sólo se puede determinar con varios años de atraso y por tanto en forma indirecta, mediante la observación de la posición del Sol y de la Luna. Para mediciones físicas, la unidad de intervalo de tiempo se ha definido en términos de un patrón atómico. El segundo universal y el segundo efímero se continúan utilizando en la navegación, estudios geodésicos y mecánica espacial.

El desarrollo y refinamiento de los resonadores atómicos ha hecho posible el control de la frecuencia de un oscilador y, por lo tanto, mediante la conversión de frecuencia, la elaboración de relojes atómicos. La transición entre dos niveles de energía, E_1 y E_2, de un átomo está relacionada con la emisión (o absorción) de radiación teniendo una frecuencia dada por $\Delta \nu = E_2 - E_1$, donde ν es la constante de Planck. Puesto que los estados de energía no son afectados por condiciones externas, como los campos magnéticos, la frecuencia $\Delta \nu$ es una constante física, que depende únicamente de la estructura interna del átomo. Ya que la frecuencia es el inverso del tiempo, un átomo proporciona un intervalo de tiempo constante. Se investigaron las transiciones atómicas de varios metales, y en 1955 se puso en operación el primer reloj atómico, basado en el átomo de cesio. El intervalo de tiempo proporcionado por el reloj de cesio es más exacto que el que proporciona un reloj calibrado por medio de mediciones astronómicas. La unidad atómica de tiempo se relacionó en un principio con el TU, pero más tarde se expresó en términos del TE. El Comité Internacional de Pesas y Medidas ha definido el segundo en términos de la frecuencia de transición del átomo de cesio, asignándole un valor de 9192631770 Hz a la transición hipertípica del átomo de cesio sin perturbaciones de campos externos.

La definición atómica del segundo alcanza una exactitud mayor que la obtenida por medio de observaciones astronómicas, lo que ha dado una base de tiempo mucho más uniforme y conveniente. La determinación de los intervalos de tiempo se pueden efectuar ahora en unos pocos minutos y con mayor exactitud que las obtenidas antes por medio de mediciones astronómicas, las cuales toman muchos años para completarse. Un reloj atómico con una precisión mayor a 1 microsegundo por día está en operación como un patrón primario de frecuencia en la NBS. La escala de tiempo atómico, designada NBS-A, se mantiene con este reloj.

Los patrones de tiempo y frecuencia son únicos y se pueden transmitir a partir de los patrones primarios de la NBS a otros lugares por medio de radio o televisión. Las transmisiones iniciales de patrones de tiempo y frecuencia se realizan por la banda de alta frecuencia (AF) del espectro de radio; pero sufrían el efecto de corrimiento Doppler debido a que la propagación de radio es básicamente ionosférica. La transmisión de los patrones de tiempo y frecuencia mediante baja frecuencia y muy baja frecuencia de radio reduce este efecto ya que la propagación sólo es de ondas terre-
nas. Dos estaciones de radio operadas por la NBS son, WWVI y WWVB, que trabajan a 20 y 60 kHz respectivamente, proporcionando transmisiones de tiempo y frecuencia precisas.

Otra fuente de información de tiempo y frecuencia de precisión es el sistema de navegación de baja frecuencia llamado LORAN-C, el cual transmite pulsos formados por una frecuencia portadora de 100 kHz con un ancho de banda de 20 kHz. Las transmisiones del LORAN-C se controlan con relojes de cesio y proporcionan señales potentes dentro de Estados Unidos y otras partes del mundo. Dado que el LORAN-C es principalmente un sistema de navegación marino, su cobertura se limita cuando hay objetos de tamaño significativo en los alrededores.

Otra fuente de información de patrones de tiempo y frecuencia exactos son las transmisiones mediante televisión. La frecuencia de las señales de color que es nominalmente de 3.579545 MHz, es puesta en fase por medio de un reloj de cesio y se distribuye a través de las estaciones de televisión. Ya que la programación de televisión se distribuye vía terrestre y por satélites de enlace de microondas, no hay un efecto Doppler significativo y la frecuencia de color se puede transmitir con exactitud y está disponible como patrón de precisión.

3.4 PATRONES ELECTRICOS

3.4.1 El ampere absoluto

El Sistema Internacional de Unidades (SI) define el ampere (unidad fundamental de corriente eléctrica) como la corriente constante que, al mantenerse a través de dos conductores paralelos de longitud infinita y sección circular despreciable alejados éstos 1 metro en el vacío, produce entre estos dos conductores una fuerza igual a 2×10^{-7} newtons por metro de longitud. Las mediciones previas del valor absoluto del ampere se hicieron con una balanza de corriente, la cual mide la fuerza entre dos conductores paralelos. Estas mediciones fueron bastante rudimentarias y fue necesario contar con un patrón más reproducible y práctico para los laboratorios nacionales. Por acuerdo internacional, el valor del ampere internacional se basó en un depósito electrolítico de plata a partir de una solución de nitrato de plata. El ampere internacional se definió entonces como la corriente que deposita plata metálica a una razón 1.118 mg/segundo a partir de una solución patrón de nitrato de plata; surgieron problemas para encontrar la medida exacta de la plata depositada y se presentaron pequeñas discrepancias entre las mediciones hechas por diferentes laboratorios de patrones nacionales.

En 1948 el ampere absoluto reemplazó al internacional. La determinación del primero se realizó por medio de la balanza de corriente, la cual pesa la fuerza ejercida entre dos b o b i n a s que conducen una corriente. El mejoramiento en las técnicas de medición de campos de fuerza da un valor para el ampere muy superior a las mediciones iniciales. La relación entre la fuerza y la corriente que produce esta fuerza se puede calcular a partir de los conceptos de la teoría electromagnética fundamental y se reduce a un simple cálculo que abarca las dimensiones geométricas de las bobinas. El ampere absoluto es actualmente la unidad fundamental de corriente eléctrica en el SI y se acepta a nivel internacional.
Los instrumentos fabricados antes de 1948 se calibraron en términos del ampero internacional, pero los dispositivos nuevos utilizan el ampero absoluto como la base de su calibración. Ya que ambos tipos de instrumentos se pueden encontrar en los laboratorios, la NBS ha establecido los factores de conversión que relacionan ambas unidades. (Sección 2-3.)

El voltaje, la corriente y la resistencia están relacionados por la ley de Ohm de proporcionalidad constante \(E = IR \). La especificación de dos cantidades cualesquiera determinan la tercera. Los tipos de patrones materiales forman una combinación, la cual sirve para mantener el ampero con alta precisión durante largos períodos: la resistencia patrón y la celda patrón (para voltaje). Cada una se describe a continuación.

3.4.2 Patrones de resistencia

El valor absoluto del ohm en el sistema SI se define en términos de las unidades fundamentales de longitud, masa y tiempo. La Oficina Internacional de Pesas y Medidas en Sèvres, así como los laboratorios de patrones nacionales, efectúan la medición absoluta del ohm. Estos últimos conservan un grupo de patrones de resistencia primarios. La NBS mantiene un grupo de esos patrones primarios (resistencias patrones de 1-Ω) las cuales se comparan de manera periódica y en ocasiones se verifican con mediciones absolutas. La resistencia patrón es una bobina de alambre de alguna aleación, como la manganina, la cual tiene una elevada resistividad eléctrica y un bajo coeficiente de temperatura-resistencia (casi una relación constante entre temperatura y resistencia). La bobina resistiva se coloca en un depósito de doble pared (figura 3-1) para prevenir cambios de resistencia debido a las condiciones de la atmósfera. Con un conjunto de cuatro o cinco resistencias de 1 Ω de este tipo, la unidad de resistencia se puede representar con una precisión de unas pocas partes en 10⁷ durante varios años.

Los patrones secundarios y de trabajo se encuentran disponibles para algunos fabricantes de instrumentos en una amplia escala de valores y por lo general en múltiplos de 10 Ω. Estas resistencias patrón se construyen de una aleación de alambre resistente, como manganina o Evanohm. La figura 3-2 es la fotografía de un patrón.
secundario de laboratorio, llamado algunas veces resistencia de transferencia. La bobina resistiva de la resistencia de transferencia está montada entre una película de poliéster para reducir esfuerzos en el alambre y mejorar la estabilidad de la resistencia. La bobina se sumerge en aceite libre de humedad y se coloca en un envase sellado. Las conexiones de la bobina se sueldan con plata y las terminales en gancho se elaboran de cobre y níquel plateado libre de oxígeno. La resistencia de transferencia se verifica con las características de estabilidad y temperatura y su régimen de potencia a una temperatura de operación especificada (normalmente a 25ºC). El informe de calibración, que acompaña a la resistencia, especifica su trazabilidad de acuerdo con los patrones de la NBS e incluye los coeficientes de temperatura α y β. Aun cuando el alambre seleccionado para la resistencia proporciona un valor casi constante en una amplia escala de temperatura, el valor exacto de la resistencia a cualquier temperatura se puede calcular a partir de la expresión

\[R_t = R_{25\,^\circ C} + \alpha (t - 25) + \beta (t - 25)^2 \]

(3-1)

donde
\[R_t = \text{ resistencia a la temperatura ambiente, } t. \]
\[R_{25\,^\circ C} = \text{ resistencia a } 25^\circ \text{C.} \]
\[\alpha, \beta = \text{ coeficientes de temperatura.} \]
El coeficiente de temperatura \(\alpha \) es generalmente menor de \(10 \times 10^{-6} \), mientras que el coeficiente \(\beta \) varía entre \(-3 \times 10^{-7} \) y \(-6 \times 10^{-7} \). Esto significa que un cambio de la temperatura de 10°C a partir de la temperatura de referencia de 25°C puede originar un cambio en la resistencia de 30 a 60 ppm (partes por millón) del valor nominal.

Las resistencias de transferencia encuentran aplicaciones en laboratorios industriales, de investigación, de calibración y de patrones. En aplicaciones típicas, la resistencia de transferencia sirve para determinar otras resistencias o para la construcción de divisores de décadas ultralineales, los cuales se utilizan en la calibración de conjuntos de relaciones universales, cajas de voltaje y divisores Kelvin-Varley.

3.4.3 Patrones de voltaje

Por muchos años el volt patrón se basó en una celda electroquímica llamada celda patrón saturada o celda patrón. La celda saturada es dependiente de la temperatura y el voltaje de salida cambia cerca de \(-40 \mu V/°C\) del valor nominal de 1.01858 V.

La celda patrón es afectada en proporción a la temperatura y también porque el voltaje es una función de una reacción química y no depende directamente de ninguna otra constante física. El trabajo de Brian Josephson, 1962, proporciona un nuevo patrón. Una unión de película delgada se enfria cerca del cero absoluto y se irradiía con microondas. Se desarrolla un voltaje a través de la unión y se relaciona con la frecuencia de irradiación por medio de la siguiente expresión:

\[
v = \frac{hf}{2e}
\]

\(h \) = Constante de Planck \((6.63 \times 10^{-34} \text{ J-s})\)
\(e \) = Carga del electrón \((1.602 \times 10^{-19} \text{ C})\)
\(f \) = Frecuencia de irradiación de las microondas

Ya que nada más la frecuencia de irradiación es únicamente una variable en la ecuación, el volt patrón se relaciona con el patrón de tiempo/frecuencia. Cuando la frecuencia de irradiación de microondas se mide con un reloj atómico o con un patrón de frecuencia de radiodifusión como la WWVB, la exactitud del volt patrón, incluyendo toda la inexactitud del sistema, es de una parte en 10^8.

El mejor método para transferir el volt del patrón basado en la unión de Josephson a patrones secundarios para la calibración es la celda patrón. Este dispositivo se conoce como celda Weston normal o saturada. La celda Weston tiene un electrodo positivo de mercurio y un electrodo negativo de amalgama de cadmio \((10\% \text{ de cadmio})\). El electrolito es una solución de sulfato de cadmio. Estos componentes se colocan en un envase de vidrio en forma de H (figura 3.3).
Hay dos tipos de celda Weston: la celda saturada, en la cual el electrolito está saturado a todas las temperaturas por los cristales del sulfato de cadmio que cubren los electrodos, y la celda no saturada, en la cual la concentración de sulfato de cadmio produce saturación a 4°C. La celda no saturada tiene un coeficiente de temperatura de voltaje despreciable a temperatura ambiente. La celda saturada tiene una valoración de voltaje de aproximadamente -40 µV por cada incremento de 1°C, pero es más reproducible y estable que la celda no saturada.

Los laboratorios de patrones nacionales, como la NBS, tienen un número de celdas saturadas como el patron primario para el voltaje. Las celdas se conservan en un baño de aceite para mantener su temperatura dentro de 0.01°C. El voltaje de la celda saturada de Weston a 20°C es 1.01858 V (absolutos), y su fem a otras temperaturas está dada por la siguiente fórmula:

\[e_t = e_{20°C} - 0.000046(t - 20) - 0.00000095(t - 20)^2 + 0.00000001(t - 20)^3 \]

(3-3)

Las celdas de Weston saturadas permanecen satisfactoriamente como patrones de voltaje durante 10 a 20 años, mientras se traten con cuidado. Su disminución de voltaje es de 1 µV por año. Puesto que las celdas saturadas son sensibles a la temperatura, no conviene usarlas en laboratorios generales o como patrones de trabajo.

Figura 3.3: Celda de cadmio Weston; fem de 1.0193, exactitud de 0.1%. (Cortesía de Eppley Laboratory, Inc.)
Los patrones secundarios y de trabajo más portátiles se encuentran en las celdas Weston sin saturar. Estas son de construcción similar a las celdas normales pero requieren el control de temperatura exacto. La fem de una celda no saturada se encuentra entre 1.0180 V a 1.0200 V y varía en menos del 0.01% de 10°C a 40°C. El voltaje de la celda se indica normalmente en su caja, como se muestra en la figura 3-3 (1.0193 V abs). La resistencia interna de una celda Weston está entre 500 y 800 Ω. La corriente que se obtiene de ellas no debe exceder los 100 µA, puesto que la caída interna de voltaje afecta el voltaje nominal.

Los patrones de trabajo de laboratorios más versátiles se han desarrollado con exactitudes comparables a las de las celdas patrón. La figura 3-4 es una fotografía de un patrón de voltaje para laboratorio de múltiples propósitos, llamado patrón de transferencia. Se basa en la operación de un diodo Zener como el elemento de referencia de voltaje. El instrumento consiste en una fuente de voltaje controlada por un Zener colocada en un ambiente de temperatura controlada para mejorar su estabilidad durante largo tiempo, y un divisor de voltaje de salida de precisión. La temperatura controlada se mantiene dentro de ±0.03°C sobre un rango de temperatura ambiente de 0°C a 50°C, proporcionando una estabilidad en la salida de 10 ppm/mes. Las cuatro salidas disponibles son: a) fuente de 0-1 000 µV con una resolución de 1 µV, llamada (Δ); b) referencia de 1.000 V para mediciones potenciométricas de voltaje; c) referencia de 1.018 + (Δ) para comparaciones de celdas saturadas; d) referencia de 1.0190 + (Δ) para comparaciones de celdas no saturadas. El patrón de referencia de cd se puede utilizar como un instrumento de transferencia y se puede transportar hasta el lugar donde se encuentra la pieza de equipo que se va a calibrar, ya que es factible desconectarlo fácilmente de la línea de potencia y colocarlo en otro sitio donde recobra su estabilidad hasta ±1 ppm con unos 30 minutos de calentamiento.

Figura 3-4. Patrón de transferencia de cd; se puede utilizar como fuente de referencia de 1.000 V, como instrumento de comparación de celdas patrón y como fuente cd de 0 a 1 000 µV. (Cortesía de Hewlett-Packard Company.)
3.4.4 Patrones de capacitancia

Ya que la unidad de resistencia se representa con la resistencia patrón y la unidad de voltaje con la celda Weston patrón, muchas unidades eléctricas y magnéticas se pueden expresar en términos de estos patrones. La unidad de capacitancia (farad) puede medirse con un puente conmutable de cd de Maxwell, donde la capacitancia se calcula a partir de las ramas resistivas del puente y la frecuencia de la conmutación cd. El puente se ilustra en la figura 3-5. Aun cuando la derivación exacta de la expresión para la capacitancia en términos de las resistencias y la frecuencia es complicada, es viable medir el capacitor con este método. Puesto que la resistencia y la frecuencia se pueden determinar con mucha exactitud, el valor de la capacitancia se puede medir también con gran exactitud. Los capacitores patrón suelen construirse de placas metálicas intercaladas con aire como material dielectrico. El área de las placas y la distancia entre éstas se debe conocer con exactitud; la capacitancia puede determinarse a partir de estas dimensiones básiyas. La NBS conserva un banco de capacitores de aire como patrones y los utiliza para calibrar los patrones secundarios y de trabajo de los laboratorios de medición y de usuarios industriales.

Los patrones de trabajo de capacitancia se pueden obtener en un amplio rango de valores. Por lo general los valores más pequeños son capacitores de aire, mientras que los capacitores más grandes utilizan materiales dielectricos sólidos. Las elevadas constantes dielectricas y las capas dielectricas muy delgadas son la base de los patrones más compactos. Los capacitores de mica-plata son excelentes patrones de trabajo; son muy estables y tienen un factor de disipación muy bajo (sección 5-8), un coeficiente de temperatura muy pequeño y poco o ningún envejecimiento. Los capacitores de mica se encuentran disponibles montados en décadas pero esta décadas de capacitores no se garantizan más allá del 1%. Por lo general se utilizan patrones fijos cuando la exactitud es importante.

3.4.5 Patrones de inductancia

El patrón de inductancia primaria se deriva del ohm y del farad en lugar de los inductores construidos geométricamente para la determinación del valor absoluto del ohm.

Figura 3-5. Método de cd conmutado para medir capacitancia. El capacitor C se carga y descarga alternadamente a través del contacto conmutable y la resistencia R. El equilibrio del puente se obtiene ajustando R, lo cual permite la determinación exacta del valor de la capacitancia en términos de las constantes de los brazos del puente y de la frecuencia de conmutación.
La NBS seleccionó el patrón Campbell de inductancia mutua como el patrón primario tanto para la inductancia mutua como la autoinductancia. Los patrones de trabajo de inductancia se encuentran disponibles comercialmente en una amplia gama de valores prácticos, fijos y variables. Un conjunto típico de patrones de inductancia fijos incluye valores de aproximadamente 100 μH a 10 H, con una exactitud garantizada de 1% a la frecuencia de operación especificada. Los inductores variables también se encuentran disponibles. La exactitud de inductancia mutua típica es del 2.5% y el rango de valores de inductancia va de 0 a 200 mH. Existe una capacitancia distribuida entre los devanados de estos inductores, y el error que introduce debe tomarse en cuenta. Estas consideraciones generalmente se especifican en el equipo comercial.

3-5 PATRONES DE TEMPERATURA E INTENSIDAD LUMINOUSA

La temperatura termodinámica es una de las cantidades básicas del SI y su unidad es el Kelvin (sección 2-2). La escala termodinámica Kelvin se conoce como la escala fundamental a la cual todas las temperaturas deben referirse. Las temperaturas en esta escala se designan como K y se denotan por el símbolo T. La magnitud del Kelvin se define como la temperatura termodinámica del punto triple del agua que ocurre exactamente a 273.16 K. El punto triple del agua es la temperatura de equilibrio entre el hielo, el agua líquida y el vapor de agua.

Ya que las mediciones de temperatura en la escala termodinámica presentan dificultades, la Seventh General Conference of Weights and Measures adoptó en 1927 una escala práctica, la cual se ha modificado varias veces y ahora se llama escala práctica internacional de temperatura. La temperatura en esta escala se designó como °C (grado Celsius) denotado por el símbolo t. La escala Celsius tiene dos puntos fijos fundamentales: el punto de ebullición del agua a 100°C y el punto triple del agua a 0.01°C, ambos se establecen a la presión atmosférica. Se han establecido otros puntos fijos primarios arriba y abajo de los dos puntos fundamentales: el punto de ebullición del oxígeno (−182.97°C), el punto de ebullición del azufre (444.6°C), el punto de congelación de la plata (960°C) y el punto de congelación del oro (1,063°C). Los valores numéricos de todos estos puntos son reproducibles a la presión atmosférica.

La conversión entre la escala Kelvin y la escala Celsius sigue la relación:

\[t(°C) = T(K) - T_0 \]

(3-4)

donde \(T_0 = 273.15 \) grados.

El termómetro patrón primario es un termómetro resistente de platino con una construcción especial donde el alambre de platino no está sujeto a esfuerzos. Los valores interpolados entre los puntos fijos fundamentales y primarios en la escala se calculan mediante fórmulas basadas en las propiedades de resistencia del alambre de platino.

El patrón primario de intensidad luminosa es un radiador total (cuerpo negro o radiador de Planck), a la temperatura de solidificación del platino (2.042°K aproximadamente). La candela se define como un sesentavo de la intensidad luminosa por cm² del radiador total. Los patrones secundarios de intensidad luminosa son lámpa-
ras con filamento de tungsteno especial, operadas a una temperatura donde su distribución de potencia espectral en la región visible concuerda con los patrones básicos. Estos patrones secundarios se recalibran con los patrones básicos en intervalos periódicos.

3.6 PATRONES IEEE

El Institute of Electrical and Electronics Engineers (IEEE) publica y conserva un conjunto de diferentes tipos de patrones. Dicha sociedad de ingenieros tiene su sede en la ciudad de Nueva York. Estos patrones no están físicamente disponibles para comparación y verificación de patrones secundarios; se trata de procedimientos patrones, nomenclaturas, definiciones, etcétera. Estos patrones se mantienen actualizados, y algunos de los más antiguos estuvieron en uso antes de la Segunda Guerra Mundial. Diversas sociedades y asociaciones han adoptado muchos de los patrones IEEE como patrones para sus organizaciones, por ejemplo el American National Standards Institute (ANSI).

Grupo importante de patrones IEEE es el método de prueba patrón para probar y evaluar varios sistemas y componentes electrónicos; por ejemplo, el método patrón para probar y evaluar atenuadores. Aunque cualquier método de prueba debe funcionar con los mismos valores de atenuación, ocurren errores de medición cuando se introducen factores como alta frecuencia o alta atenuación. La especificación de una metodología disminuye la probabilidad de tener disparidad entre mediciones.

Otros patrones muy útiles son las especificaciones del equipo de prueba. El osciloscopio de laboratorio común llega a tener dificultades de uso cuando el fabricante adopta un esquema diferente de botones y funciones y, peor aún con diferentes nombres para la misma función. Los patrones del IEEE tienen un directorio de osciloscopios de laboratorio donde se especifican los controles, funciones, etcétera, así que el operador no tiene que capacitarse antes de emplear un dispositivo diferente.

Existen varios patrones relativos a la seguridad del almacenaje de plantas de energía, barcos, edificios industriales, etcétera. No sólo la seguridad es un factor importante; también se especifican los voltajes patrones, núcleo de corriente, etcétera, de manera que resulta factible intercambiar los componentes sin ocasionar daños o peligro.

Los símbolos lógicos y esquemáticos habituales están definidos, de manera que cualquier ingeniero puede entender los dibujos de ingeniería.

Tal vez uno de los patrones más importantes es la interfase digital IEEE 488, para prueba de instrumentación programable y otros equipos. Estandarizar la interfase entre los equipos de prueba permite la conexión entre piezas de equipo de prueba de laboratorio, sin importar su fabricación para crear avanzados sistemas de equipo de prueba automáticos. En el capítulo 13 se exponen aplicaciones de estos patrones.

BIBLIOGRAFÍA

PROBLEMAS

3-1. ¿Cuál es la diferencia entre un patrón primario y uno secundario?
3-2. ¿Cómo se define el metro patrón?
3-3. ¿Qué es tiempo atómico? ¿Cómo se diferencia del tiempo efímero?
3-4. ¿Cómo se pueden difundir o transmitir los patrones de tiempo y frecuencia?
3-5. ¿Cómo se determina el amperio absoluto?
3-6. Un patrón de resistencia de 1 Ω de precisión se ha calibrado a 25°C y tiene un factor α de 0.6×10^{-4} y un factor β de -4×10^{-7}. ¿Cuál es la resistencia del patrón a 30°C?
3-7. Se baña una unión de Josephson con una radiación de microondas de 10.25 GHz. ¿Cuál es el potencial a través de la unión?
3-8. ¿Cuáles son las desventajas de transmitir los patrones de tiempo y frecuencia por medio de la alta frecuencia de radio de 3-30 MHz? ¿Cuáles son algunos de los métodos utilizados para efectuar la transmisión de estos patrones?
3-9. ¿Qué son los patrones IEEE? ¿Cuál es la diferencia de éstos con respecto a los conservados por los laboratorios de patrones nacionales?
3-10. ¿Cuál es la fem normal de una celda Weston a 20°C, y cómo cambia cuando la celda se utiliza a 0°C?