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Abstract: Two multi-objective genetic algorithms, an elitist version of MOGA and NSGA-II,
were applied to solve two linear control design problems. The first was a H2 problem with a
PI controller structure, for a first order stable plant. The second was a mixed H2/H4 control
problem. In both cases, three indicators were used to evaluate each algorithm performance:
Set coverage, spread and hypervolume. It was found that NSGA-II shows better performance
indicators. Moreover, for the second problem, a new controller representation was proposed
with corresponding cross-over and mutation operators. This approach was able to find solutions
as good as those previously published. The main advantage is that the stability restriction
disappears, allowing to deal with an unconstrained optimization problem.

Keywords: Computer-aided control system design, Genetic algorithms, Multiobjective
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1. INTRODUCTION

Multi-Objective Evolutionary Algorithms (MOEA) have
been successfully applied to solve control problems, when
a number of design objectives are conflicting (Liu et
al, 2002) . One of the first attempts was presented by
Fonseca (1995). This author developed an algorithm called
”Multiple Objective Genetic Algorithm” (MOGA) and
presented several applications to control system design.

Herreros (2000) proposed an algorithm called ”Multi-
Objective Robust Control Design” (MRCD) and tested it
against a ”Linear Matrix Inequalities” (LMI) approach for
H2/H4 problems. An adaptive search space was proposed,
motivated by two reasons: the selection of the initial
population and the delimitation of the search space. In
fact, these remain open subjects.

Herreros et al. (2001) presented an approach for adjusting
the parameters of a PID controller based on the MRCD
algorithm. The approach was generalized to design mul-
tivariable coupled and decentralized PID loops and was
successfully validated for a large number of experimental
cases.

Takahashi et al. (2004) and Molina-Cristobal et al. (2006a)
also compared genetic versus LMI -based approaches to
estimate the Pareto set for H2/H4 problems. The authors
asserted that the genetic approach could find better results
compared to the LMI approach.
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Tan et al. (2005) presented a comprehensive treatment on
the design of multi-objective evolutionary algorithms and
their applications in domains covering areas such as control
and scheduling.

Despite all this important work, many improvements and
analysis are still to be accomplished. This includes issues
like space search adaptation, controller representations,
variation operators, complex problems tackling, etc. For
example, the literature is not rich concerning comparative
studies of MOEAs for control design applications: this kind
of studies could be useful for the designer to select an
algorithm for a given project.

In this paper, two MOEAs are compared: an elitist version
of MOGA, here called EMOGA, and NSGA-II proposed
by Deb (2000) . Two linear control design problems are
discussed. The first is a H2 problem with a PI controller
structure, for a first order stable plant. The second is
a more complex H2/H4 problem, previously studied by
Herreros (2000) and Molina-Cristobal et al. (2006a).

For the first problem, the trade-o� e�ect between per-
turbation and noise rejection is analyzed. For the second
problem, a new controller representation is proposed with
corresponding cross-over and mutation operators. In both
cases, three indicators were used to evaluate each algo-
rithm performance: Set coverage, spread and hypervolume.

The exposition is organized as follows. In section 2, the
optimization algorithms are introduced. In sections 3 and
4 the control problems are explained and numerical results
are given. Finally, conclusions are drawn in section 5.
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2. MULTI-OBJECTIVE EVOLUTIONARY
ALGORITHMS (MOEA)

Many multi-objective optimization algorithms using evo-
lutionary concepts have been suggested since the pio-
neering work by Scha�er (1984). In order to obtain e�ec-
tive results, the search process needs to be guided toward
the Pareto-optimal front, maintaining diversity to prevent
premature convergence and to achieve a well distributed
population. The two MOEA which will be compared in
this work are briefly described below.

2.1 Elitist Multi-Objective Genetic Algorithm

The algorithmMOGA (Fonseca, 1995) assigns the smallest
rank value for all non-dominated individuals. The domi-
nated ones are ranked according to the number of individ-
uals that dominate them. The fitness of each individual is
computed by implementing a mapping inversely related to
its rank. This value will be degraded based upon a shar-
ing function, according to the distribution density in the
feature space. The parameter � regulates the shape of the
sharing function. The sharing distance �share determines
the extent of the sharing region for each indivi-dual. Note
that the original version of MOGA does not include any
elitist mechanism.

In this work an elitist version of MOGA, here called
EMOGA, was considered. The implemented elitist mecha-
nism is very simple: after the o�spring is created, children
and parents are put together and the shared fitness is
computed. The survivors selection is based on this last
value.

2.2 Elitist Non-dominated Sorting Genetic Algorithm

NSGA-II is an improved, ”state of the art”, version of
the original algorithm proposed by Srinivas & Deb (1994).
Note that this algorithm was previously used to design
PID structures by Lagunas (2004).

NSGA-II has the following features:

• It uses an elitist principle.
• It uses and explicit diversity preserving mechanism.
• There is no sharing parameter to select.
• The sorting mechanism is faster than MOGA.

The o�spring is created using the parent population and
usual genetic operators. Thereafter, the two populations
are combined together and a non-dominated sorting mech-
anism is used to classify the entire population.

3. PI STRUCTURES DESIGN USING MOEA

PI is the preferred controller strategy for industrial appli-
cations. Therefore, it is important to verify whether any
design problem can be solved using a PI structure like the
following:

KPI(s) = Kp

�
1 +

1

Tis

�
(1)

Fig.1 Control system with a PI controller

In this section, the system presented in figure 1 is consi-
dered, with:

• r(s) � reference signal
• d(s) � disturbance signal
• n(s) � noise signal

Let G(s) be the plant transfer function, Wn(s) and Wd(s)
arbitrary filters with:

G(s) =
1

s+ 1
,Wn(s) =

1

s+ 1
,Wd(s) = 1 (2)

Let r(s) = 0 (regulation problem). For the closed loop we
have:

y(s) = �T (s)Wn(s)n(s) + S(s)Wd(s)d(s) (3)

with

T (s) =
KPI(s)G(s)

1 +KPI(s)G(s)
, S(s) =

1

1 +KPI(s)G(s)
(4)

and

S(s) + T (s) = 1 (5)

For the condition ny(s)n � 0 to hold, it is necessary that
nT (s)n � 0 and nS(s)n � 0 at the same time. However,
from (5) this can not be accomplished and this is why
a trade-o� has to be seeked. The two-objective control
problem can be stated as follows:

min
KPI5R(s)

nu×ny

�
nWn(s)S(s)n2
nWd(s)T (s)n2

�
(6)

subject to the stability of the closed-loop system.

Before starting the optimization process, the search space
for Kp, Ti has to be specified. In this case, to have closed-
loop stability, it is su!cient to set

Kp > 0, Ti > 0 (7)

Note that in this example, it is easy to generate feasible
individuals, even after cross-over and mutations: there is
no need for any mechanism to cope with the stability
restriction. This of course is not true in the general case.
The search space was set as:

Kp, Ti 5 [0.1, 100] (8)

3.1 EMOGA results

The EMOGA algorithm was executed using the parame-
ters given in table 1. No special tuning procedure was
carried out. The final Pareto front approximation is pre-
sented in figure 2.
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Table 1. EMOGA parameters

Representation Real numbers
Cross-Over Recombination Arithmetic

Cross-Over Rate 0.9
Mutation Operator Gaussian Perturbation
Mutation Rate 1/50

�share 1
� 2

Stop Condition 50 generations
Initial Population Random
Parents Selection SUS (s = 2)
Survivor Selection (50 + 25)
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Fig 2. Final Pareto front approximation with EMOGA

3.2 NSGA-II results

The algorithm NSGA-II was executed using the parame-
ters given in table 2. The final Pareto front approximation
is presented in figure 3. To illustrate the trade-o� between
perturbation and noise rejection, three final controllers
K1, K2 and K3 were selected (see table 3). A simulation
was carried out with each controller. In figures 4, 5 and 6
simulation plots, corresponding to closed-loop responses,
are presented. Note that, as expected, K3 achieves a better
trade-o� compared to K1 and K2.

Table 2. NSGA-II parameters

Representation Real numbers
Cross-Over Recombination Arithmetic

Cross-Over Rate 0.9
Mutation Operator Gaussian Perturbation
Mutation Rate 1/50
Stop Condition 50 generations
Initial Population Random
Parents Selection Binary Tournament
Survivor Selection (50 + 25)

Table 3. K1, K2 and K3 parameters. NSGA-II results.

Kp Ti nWn(s)S(s)n2 nWd(s)T (s)n2
K1 82.15 67.73 0.08 6.37
K2 0.51 96.76 0.57 0.29
K3 9.98 100 0.21 2.13

Fig 3. Final Pareto front approximation with NSGA-II
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Fig 4. Perturbation and noise rejection with K1

Fig 5. Perturbation and noise rejection with K2
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Fig 6. Perturbation and noise rejection with K3
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3.3 Comparison between EMOGA and NSGA-II.

Each algorithm was executed 30 times. The mean value
and the standard deviation was calculated for each indi-
cator (see table 4):

• Set Coverage (C): it calculates the proportion of
dominating solutions (always with respect to other
approximation set). It is better when it is greater.

• Spread (�): it evaluates the diversity among the
solutions. It is better when it is lower.

• Hypervolume (HV ): it evaluates both closeness to the
Pareto front and diversity among the solutions. It is
better when it is greater. For more information about
performance indicators, see the reference (Deb, 2001).

Table 4. EMOGA - NSGA-II comparison. Problem 1.

Ind. EMOGA NSGA-II

C 5.3× 10�3(1.4× 10�2) 1.2× 10�2(2.7× 10�2)
� 1.1(1.6× 10�1) 6.8× 10�1(6.0× 10�2)
HV 2.0(1.4) 2.8(0.8)

4. MULTI-OBJECTIVE POLE PLACEMENT WITH
EVOLUTIONARY ALGORITHMS

4.1 The control problem

We focus now on the problem of designing a linear con-
troller Kc 5 R(s)nu×ny for the system shown in figure 7.
Matrices A 5 Rn×n, B 5 Rn×nu and C 5 Rny×n denote
the given plant state matrices.

Fig 7. Second control system

As usual, w 5 Lnw×12 denote the exogenous input, z1 5

L
nz1×1
2 and z2 5 L

nz2×1
2 represent the outputs to be

regulated, while u 5 Lnu×12 and y 5 L
ny×1
2 represent the

control input and the measured output respectively. It is
assumed that G(s) = C(sI � A)�1B is strictly proper,
stabilizable from u and detectable from y. The open-loop
state-space equations are:+

ẋ = Ax+ Iw +Bu
z1 = y = Cx
z2 = Ax

(9)

The state-space equations of the controller are:�
ẋc = Acxc � Ly
u = Kxc

(10)

with K 5 Rnu×n, L 5 Rn×ny and

Kc(s) = �K(sI �Ac)
�1L (11)

Let

T1(Kc) = Tz1w(Kc) (12)

T2(Kc) = Tz2w(Kc) (13)

be the closed-loop transfer function from w to z1 and
z2 respectively. The mixed H2/H4 Objective Control
Problem (MOCP) can now be stated as:

min
Kc5Kn�R(s)nu×ny

�
nT1(Kc)n2
nT2(Kc)n4

�
(14)

where Kn � R(s)nu×ny is the set of all stabilizing con-
trollers of degree n.

4.2 The Pole Placement Method

Recall that an output feedback controller can be designed
by combining a full information controller with a state
observer. The resulting output feedback sub-system is
called ”observer-based controller” and has the following
state-equations:

+
·

ex= (A+BK + LC) ex� Ly
u = Kex

(15)

where ex is the estimated state. Thus, the system closed-
loop state equations, using the estimation error ee = x� ex
as state variable are:;
AAAAAAA?
AAAAAAA=

#
ẋ
·

ee

$
=

�
A+BK �BK
0 A+ LC

��
x
ee

�
+

�
I
I

�
w

z1 = y = (C 0 )

�
x
ee

�

z2 = (A 0 )

�
x
ee

�
(16)

Let pk 5 Cnk and pl 5 Cnl be the eigenvalues of A+ BK
and A+LC respectively. To assure closed-loop system sta-
bility, the gain matrix K and L must be calculated in such
way that pk and pl belong to C� (open left-half complex
plan). This representation allows poles be placed through
a classical observer-based feedback controller, based on the
information contained within each chromosome. Note that,
unlike this representation, usually controllers are coded in
terms of real-valued controller parameters. For example, in
(Molina-Cristobal et al, 2006b) the decision variables are
the parameters of the controller, which has the following
form:

K(s) = bs+ c
s2 + a1s+ a2
s2 + b1s+ b2

(17)

The key concept of the proposed design method is using an
evolutionary process in order to evolve pk and pl, moving
across C� in order to find the best feasible closed-loop
poles locations. In this work, the MATLAB place function
was used to compute K and L from pk, pl. Note that
a similar approach, based on Diophantine equations, was
previously proposed in Zavala et al. (2002).

The MOCP problem (14) can be stated again as:

min
pk,pl5C�

�
nT1(pk, pl)n2
nT2(pk, pl)n4

�
(18)
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Note that, in this case, the stability restriction Kc 5
Kn has disappeared. This is the main advantage of the
proposed method when compared to previous works by
Herreros (2000) and Molina-Cristobal et al. (2006a).

Despite the simplicity of this method, problems have been
reported when using the pole placement technique: in high-
order systems, certain pole locations result in very large
gains (Laub & Wette, 1984). This fact suggests caution
during the optimization evolutionary process: a penalty
mechanism can be used in order to avoid such locations.

4.3 Representation and Operators

In this framework, chromosomes were designed to contain
the information about closed-loop poles location. They
consist of complex-valued vectors containing the concate-
nation of pk and pl (see figure 8).

Fig 8. Chromosome structure

Two cross-over operators were implemented. The first (see
figure 9) performs a ”block” exchange between pk and pl,
belonging to di�erent individuals. The second (see figure
10) performs an uniform random cross-over (Eiben, 2003).

Two mutation operators were also implemented. The first
(see figure 11) performs a ”block” exchange between
pk and pl belonging to the same individual. The second
(see figure 12) slightly moves the poles in random direc-
tions.

Note that by construction of all operators, the new chil-
dren are always feasible (i.e represents a stabilizing con-
trollers).

4.4 A design example

The proposed representation and operators were applied to
solve the MOCP problem (18) with EMOGA and NSGA-II
and the following state matrices:

�
A B
C D

�
=

3
EC

�21 �120 �100
1 0 0
0 1 0

1
0
0

0 0 150 0

4
FD (19)

These algorithms were executed using the parameters
given in tables 5 and 6. The final Pareto front approxi-
mations are presented in figures 13 and 14.

Fig 9. First cross-over operator

Fig 10. Second cross-over operator

Fig 11. First mutation operator

Fig 12. Second mutation operator

Table 5. EMOGA parameters. Problem 2.

Representation Complex numbers
Cross-Over Recombination Ops 1,2

Cross-Over Rate 0.9
Mutation Operator Ops 1,2
Mutation Rate 1/50

�share 2.7733
� 2

Stop Condition 100 generations
Initial Population Random
Parents Selection SUS (s = 2)
Survivor Selection (50 + 50)
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Table 6. NSGA-II parameters. Problem 2.

Representation Complex numbers
Cross-Over Recombination Ops 1,2

Cross-Over Rate 0.9
Mutation Operator Ops 1,2
Mutation Rate 1/50
Stop Condition 100 generations
Initial Population Random
Mating Restriction None
Parents Selection Binary Tournament
Survivor Selection (50 + 50)
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Fig 13. Final Pareto front approximation with EMOGA.
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Fig 14. Final Pareto front approximation with NSGA-II

Comparison between EMOGA and NSGA-II Each algo-
rithm was executed 30 times. Table 7 shows the results for
each indicator, with mean value and standard deviation
between parentheses.

Table 7. EMOGA - NSGA-II comparison. Problem 2.

Ind. EMOGA NSGA-II

C 3.4× 10�2(2.9× 10�2) 7.5× 10�1(8.5× 10�2)
� 1.0(5.1× 10�2) 9.9× 10�1(5.4× 10�2)
HV 4.5× 105(2.8× 104) 5.4× 105(1.8× 104)

5. CONCLUSIONS AND FUTURE WORK

The goal of this paper was to present two applications
of two MOEAs and to compare the performance of each
algorithm. It was found that for both problems NSGA-II
shows better performance indicators than EMOGA.

For the second problem, a new approach for controller co-
ding, with cross-over and mutation operators, was pro-
posed. This approach was able to find solutions as good as

those previously published. However, its main advantage
is that the stability restriction disappears, allowing to deal
with an unconstrained optimization problem.

Finally, it is clear that more tests are needed. The authors
are currently testing other ”state-of-the art” MOEAs and
other representations, in order to solve more complex
control problems.
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